Properties

Label 2.3e3_23.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 3^{3} \cdot 23 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$621= 3^{3} \cdot 23 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{3} + 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + 20 + \left(3 a + 7\right)\cdot 29 + \left(9 a + 24\right)\cdot 29^{2} + \left(19 a + 7\right)\cdot 29^{3} + \left(18 a + 16\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 + 12\cdot 29 + 20\cdot 29^{2} + 23\cdot 29^{3} + 8\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 21 + \left(25 a + 17\right)\cdot 29 + \left(19 a + 8\right)\cdot 29^{2} + \left(9 a + 8\right)\cdot 29^{3} + \left(10 a + 3\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 18 + \left(12 a + 28\right)\cdot 29 + 15 a\cdot 29^{2} + \left(5 a + 11\right)\cdot 29^{3} + \left(11 a + 28\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 17 + 3\cdot 29 + 25\cdot 29^{2} + 12\cdot 29^{3} + 9\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 16 + \left(16 a + 16\right)\cdot 29 + \left(13 a + 7\right)\cdot 29^{2} + \left(23 a + 23\right)\cdot 29^{3} + \left(17 a + 20\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,5)(3,4)$ $-2$
$3$ $2$ $(1,2)(3,4)(5,6)$ $0$
$3$ $2$ $(1,3)(4,6)$ $0$
$2$ $3$ $(1,5,3)(2,4,6)$ $-1$
$2$ $6$ $(1,4,5,6,3,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.