Properties

Label 2.3e3_229.3t2.1
Dimension 2
Group $S_3$
Conductor $ 3^{3} \cdot 229 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3$
Conductor:$6183= 3^{3} \cdot 229 $
Artin number field: Splitting field of $f= x^{3} - 9 x - 32 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 20 + 47\cdot 59 + 56\cdot 59^{2} + 3\cdot 59^{3} + 24\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 47 + 49\cdot 59 + 8\cdot 59^{2} + 37\cdot 59^{3} + 6\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 51 + 20\cdot 59 + 52\cdot 59^{2} + 17\cdot 59^{3} + 28\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character values
$c1$
$1$ $1$ $()$ $2$
$3$ $2$ $(1,2)$ $0$
$2$ $3$ $(1,2,3)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.