Properties

Label 2.3e3_13e2.6t5.1c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 3^{3} \cdot 13^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$4563= 3^{3} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 6 x^{4} + 4 x^{3} + 96 x^{2} - 144 x + 64 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.3_13.6t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 5 + \left(10 a + 25\right)\cdot 31 + \left(6 a + 5\right)\cdot 31^{2} + \left(17 a + 9\right)\cdot 31^{3} + \left(30 a + 23\right)\cdot 31^{4} + \left(25 a + 8\right)\cdot 31^{5} + \left(27 a + 15\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 26 + \left(5 a + 16\right)\cdot 31 + \left(16 a + 15\right)\cdot 31^{2} + \left(20 a + 5\right)\cdot 31^{3} + 21 a\cdot 31^{4} + \left(4 a + 8\right)\cdot 31^{5} + \left(5 a + 19\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 6 + \left(30 a + 11\right)\cdot 31 + \left(13 a + 11\right)\cdot 31^{2} + \left(25 a + 2\right)\cdot 31^{3} + \left(25 a + 23\right)\cdot 31^{4} + \left(19 a + 2\right)\cdot 31^{5} + \left(20 a + 30\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 29 a + 30 + \left(25 a + 24\right)\cdot 31 + \left(14 a + 11\right)\cdot 31^{2} + \left(10 a + 30\right)\cdot 31^{3} + \left(9 a + 22\right)\cdot 31^{4} + \left(26 a + 26\right)\cdot 31^{5} + \left(25 a + 24\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 26 a + 15 + \left(20 a + 9\right)\cdot 31 + \left(24 a + 8\right)\cdot 31^{2} + \left(13 a + 6\right)\cdot 31^{3} + 5\cdot 31^{4} + \left(5 a + 30\right)\cdot 31^{5} + \left(3 a + 13\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 14 + 5\cdot 31 + \left(17 a + 9\right)\cdot 31^{2} + \left(5 a + 8\right)\cdot 31^{3} + \left(5 a + 18\right)\cdot 31^{4} + \left(11 a + 16\right)\cdot 31^{5} + \left(10 a + 20\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,6)$
$(1,6,4)(2,3,5)$
$(1,2,6,5,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,5)(2,4)(3,6)$$0$
$1$$3$$(1,6,4)(2,5,3)$$2 \zeta_{3}$
$1$$3$$(1,4,6)(2,3,5)$$-2 \zeta_{3} - 2$
$2$$3$$(1,6,4)(2,3,5)$$-1$
$2$$3$$(1,4,6)$$-\zeta_{3}$
$2$$3$$(1,6,4)$$\zeta_{3} + 1$
$3$$6$$(1,2,6,5,4,3)$$0$
$3$$6$$(1,3,4,5,6,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.