Properties

Label 2.3e3_13.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 3^{3} \cdot 13 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$351= 3^{3} \cdot 13 $
Artin number field: Splitting field of $f= x^{6} - 5 x^{3} + 13 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 39 a + 14 + \left(8 a + 1\right)\cdot 47 + \left(22 a + 17\right)\cdot 47^{2} + \left(33 a + 10\right)\cdot 47^{3} + \left(4 a + 14\right)\cdot 47^{4} + \left(10 a + 7\right)\cdot 47^{5} + \left(34 a + 25\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 45 + \left(38 a + 26\right)\cdot 47 + \left(24 a + 5\right)\cdot 47^{2} + \left(13 a + 8\right)\cdot 47^{3} + \left(42 a + 37\right)\cdot 47^{4} + \left(36 a + 22\right)\cdot 47^{5} + \left(12 a + 36\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 33 a + 9 + \left(46 a + 34\right)\cdot 47 + \left(37 a + 3\right)\cdot 47^{2} + \left(23 a + 36\right)\cdot 47^{3} + \left(19 a + 34\right)\cdot 47^{4} + \left(a + 9\right)\cdot 47^{5} + \left(12 a + 40\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 25 a + 21 + \left(8 a + 19\right)\cdot 47 + \left(13 a + 8\right)\cdot 47^{2} + \left(10 a + 40\right)\cdot 47^{3} + \left(24 a + 6\right)\cdot 47^{4} + \left(11 a + 31\right)\cdot 47^{5} + \left(46 a + 41\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 22 a + 24 + \left(38 a + 11\right)\cdot 47 + \left(33 a + 26\right)\cdot 47^{2} + 36 a\cdot 47^{3} + \left(22 a + 45\right)\cdot 47^{4} + \left(35 a + 29\right)\cdot 47^{5} + 28\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 28 + \left(9 a + 33\right)\cdot 47^{2} + \left(23 a + 45\right)\cdot 47^{3} + \left(27 a + 2\right)\cdot 47^{4} + \left(45 a + 40\right)\cdot 47^{5} + \left(34 a + 15\right)\cdot 47^{6} +O\left(47^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,3)$
$(1,4)(2,3)(5,6)$
$(2,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,4)(2,3)(5,6)$ $0$ $0$
$1$ $3$ $(1,5,3)(2,4,6)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,3,5)(2,6,4)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,5,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,3,5)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,5,3)(2,6,4)$ $-1$ $-1$
$3$ $6$ $(1,6,5,2,3,4)$ $0$ $0$
$3$ $6$ $(1,4,3,2,5,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.