Properties

Label 2.3e2_83.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 3^{2} \cdot 83 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$747= 3^{2} \cdot 83 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} + 15 x^{3} - 12 x^{2} - 13 x - 20 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 23 + 24\cdot 47 + 25\cdot 47^{2} + 32\cdot 47^{3} + 46\cdot 47^{4} + 25\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 36 + 24\cdot 47 + \left(23 a + 35\right)\cdot 47^{2} + \left(26 a + 32\right)\cdot 47^{3} + \left(46 a + 33\right)\cdot 47^{4} + \left(26 a + 15\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 40 a + 43 + \left(23 a + 30\right)\cdot 47 + \left(32 a + 13\right)\cdot 47^{2} + \left(40 a + 6\right)\cdot 47^{3} + \left(20 a + 23\right)\cdot 47^{4} + \left(42 a + 25\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 9 + 4\cdot 47 + 24\cdot 47^{2} + 45\cdot 47^{3} + 6\cdot 47^{4} + 8\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 40 a + 3 + \left(46 a + 18\right)\cdot 47 + \left(23 a + 34\right)\cdot 47^{2} + \left(20 a + 15\right)\cdot 47^{3} + 6\cdot 47^{4} + \left(20 a + 23\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 29 + \left(23 a + 38\right)\cdot 47 + \left(14 a + 7\right)\cdot 47^{2} + \left(6 a + 8\right)\cdot 47^{3} + \left(26 a + 24\right)\cdot 47^{4} + \left(4 a + 42\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,2)(3,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,6)(3,5)$ $-2$
$3$ $2$ $(1,2)(3,5)(4,6)$ $0$
$3$ $2$ $(1,3)(4,5)$ $0$
$2$ $3$ $(1,6,3)(2,5,4)$ $-1$
$2$ $6$ $(1,5,6,4,3,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.