Properties

Label 2.3e2_7e2_563.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 3^{2} \cdot 7^{2} \cdot 563 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$248283= 3^{2} \cdot 7^{2} \cdot 563 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 151 x^{4} - 313 x^{3} + 5788 x^{2} - 12225 x + 80536 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.563.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 27 + \left(10 a + 14\right)\cdot 29 + \left(11 a + 8\right)\cdot 29^{2} + \left(21 a + 8\right)\cdot 29^{3} + 26 a\cdot 29^{4} + \left(6 a + 14\right)\cdot 29^{5} + \left(22 a + 27\right)\cdot 29^{6} + \left(21 a + 26\right)\cdot 29^{7} + \left(2 a + 7\right)\cdot 29^{8} + \left(12 a + 5\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 18 + \left(18 a + 3\right)\cdot 29 + \left(17 a + 26\right)\cdot 29^{2} + \left(7 a + 16\right)\cdot 29^{3} + \left(2 a + 25\right)\cdot 29^{4} + \left(22 a + 21\right)\cdot 29^{5} + \left(6 a + 15\right)\cdot 29^{6} + \left(7 a + 26\right)\cdot 29^{7} + \left(26 a + 28\right)\cdot 29^{8} + \left(16 a + 4\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 14 + 10\cdot 29 + 23\cdot 29^{2} + 3\cdot 29^{3} + 3\cdot 29^{4} + 22\cdot 29^{5} + 14\cdot 29^{6} + 4\cdot 29^{7} + 21\cdot 29^{8} + 18\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 23 a + 9 + \left(5 a + 7\right)\cdot 29 + \left(12 a + 27\right)\cdot 29^{2} + \left(20 a + 28\right)\cdot 29^{3} + \left(6 a + 25\right)\cdot 29^{4} + \left(22 a + 6\right)\cdot 29^{5} + \left(2 a + 6\right)\cdot 29^{6} + \left(11 a + 8\right)\cdot 29^{7} + \left(15 a + 5\right)\cdot 29^{8} + \left(9 a + 17\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 13 + 8\cdot 29 + 6\cdot 29^{2} + 26\cdot 29^{3} + 21\cdot 29^{4} + 26\cdot 29^{5} + 24\cdot 29^{6} + 17\cdot 29^{7} + 10\cdot 29^{8} + 20\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 6 a + 8 + \left(23 a + 13\right)\cdot 29 + \left(16 a + 24\right)\cdot 29^{2} + \left(8 a + 2\right)\cdot 29^{3} + \left(22 a + 10\right)\cdot 29^{4} + \left(6 a + 24\right)\cdot 29^{5} + \left(26 a + 26\right)\cdot 29^{6} + \left(17 a + 2\right)\cdot 29^{7} + \left(13 a + 13\right)\cdot 29^{8} + \left(19 a + 20\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(1,2)(4,6)$
$(1,4)(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,4)(3,5)$$-2$
$3$$2$$(1,2)(4,6)$$0$
$3$$2$$(1,4)(2,6)(3,5)$$0$
$2$$3$$(1,3,2)(4,6,5)$$-1$
$2$$6$$(1,5,2,6,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.