Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 25 a + 9 + \left(11 a + 32\right)\cdot 37 + \left(20 a + 17\right)\cdot 37^{2} + \left(30 a + 21\right)\cdot 37^{3} + \left(14 a + 6\right)\cdot 37^{5} + \left(11 a + 19\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 25 a + 22 + \left(11 a + 29\right)\cdot 37 + \left(20 a + 21\right)\cdot 37^{2} + \left(30 a + 9\right)\cdot 37^{3} + 24\cdot 37^{4} + \left(14 a + 33\right)\cdot 37^{5} + \left(11 a + 36\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 12 a + 11 + \left(25 a + 14\right)\cdot 37 + \left(16 a + 17\right)\cdot 37^{2} + 6 a\cdot 37^{3} + \left(36 a + 34\right)\cdot 37^{4} + \left(22 a + 14\right)\cdot 37^{5} + \left(25 a + 31\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 12 a + 35 + \left(25 a + 16\right)\cdot 37 + \left(16 a + 13\right)\cdot 37^{2} + \left(6 a + 12\right)\cdot 37^{3} + \left(36 a + 10\right)\cdot 37^{4} + \left(22 a + 24\right)\cdot 37^{5} + \left(25 a + 13\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 24 + 7\cdot 37 + 22\cdot 37^{2} + 27\cdot 37^{3} + 32\cdot 37^{4} + 29\cdot 37^{5} + 13\cdot 37^{6} +O\left(37^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 11 + 10\cdot 37 + 18\cdot 37^{2} + 2\cdot 37^{3} + 9\cdot 37^{4} + 2\cdot 37^{5} + 33\cdot 37^{6} +O\left(37^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)(3,4)(5,6)$ |
| $(3,5)(4,6)$ |
| $(1,3,6,2,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$-2$ |
| $3$ |
$2$ |
$(3,5)(4,6)$ |
$0$ |
| $3$ |
$2$ |
$(1,2)(3,6)(4,5)$ |
$0$ |
| $2$ |
$3$ |
$(1,6,4)(2,5,3)$ |
$-1$ |
| $2$ |
$6$ |
$(1,3,6,2,4,5)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.