Properties

Label 2.3e2_7e2_257.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 3^{2} \cdot 7^{2} \cdot 257 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$113337= 3^{2} \cdot 7^{2} \cdot 257 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 24 x^{4} + 13 x^{3} + 99 x^{2} - 70 x + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 13 + 3\cdot 37 + 25\cdot 37^{2} + 20\cdot 37^{3} + 2\cdot 37^{4} + 28\cdot 37^{5} + 17\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 26 + 29\cdot 37^{2} + 8\cdot 37^{3} + 26\cdot 37^{4} + 18\cdot 37^{5} + 35\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 26 a + 19 + \left(7 a + 4\right)\cdot 37 + \left(26 a + 23\right)\cdot 37^{2} + \left(20 a + 4\right)\cdot 37^{3} + \left(6 a + 11\right)\cdot 37^{4} + \left(4 a + 6\right)\cdot 37^{5} + \left(8 a + 9\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 12 + \left(29 a + 9\right)\cdot 37 + \left(10 a + 9\right)\cdot 37^{2} + \left(16 a + 24\right)\cdot 37^{3} + \left(30 a + 16\right)\cdot 37^{4} + \left(32 a + 16\right)\cdot 37^{5} + 28 a\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 11 a + 36 + \left(29 a + 11\right)\cdot 37 + \left(10 a + 5\right)\cdot 37^{2} + \left(16 a + 36\right)\cdot 37^{3} + \left(30 a + 29\right)\cdot 37^{4} + \left(32 a + 25\right)\cdot 37^{5} + \left(28 a + 19\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 26 a + 6 + \left(7 a + 7\right)\cdot 37 + \left(26 a + 19\right)\cdot 37^{2} + \left(20 a + 16\right)\cdot 37^{3} + \left(6 a + 24\right)\cdot 37^{4} + \left(4 a + 15\right)\cdot 37^{5} + \left(8 a + 28\right)\cdot 37^{6} +O\left(37^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,6)(4,5)$
$(3,4)(5,6)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,6)(4,5)$ $-2$
$3$ $2$ $(1,3)(2,6)(4,5)$ $0$
$3$ $2$ $(1,6)(2,3)$ $0$
$2$ $3$ $(1,6,5)(2,3,4)$ $-1$
$2$ $6$ $(1,4,6,2,5,3)$ $1$
The blue line marks the conjugacy class containing complex conjugation.