Properties

Label 2.3e2_7e2_257.6t3.1c1
Dimension 2
Group $D_{6}$
Conductor $ 3^{2} \cdot 7^{2} \cdot 257 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$113337= 3^{2} \cdot 7^{2} \cdot 257 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 137 x^{4} + 259 x^{3} + 4640 x^{2} - 8349 x - 30071 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Even
Determinant: 1.257.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 6 + \left(15 a + 17\right)\cdot 19 + \left(12 a + 3\right)\cdot 19^{2} + 15\cdot 19^{3} + \left(15 a + 10\right)\cdot 19^{4} + \left(9 a + 4\right)\cdot 19^{5} + \left(13 a + 2\right)\cdot 19^{6} + \left(14 a + 2\right)\cdot 19^{7} + \left(9 a + 9\right)\cdot 19^{8} + \left(10 a + 11\right)\cdot 19^{9} + \left(3 a + 12\right)\cdot 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 2 + 10\cdot 19 + 19^{2} + 17\cdot 19^{3} + 16\cdot 19^{4} + 6\cdot 19^{5} + 17\cdot 19^{6} + 18\cdot 19^{7} + 8\cdot 19^{8} + 2\cdot 19^{9} + 7\cdot 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 4 + \left(11 a + 13\right)\cdot 19 + \left(14 a + 16\right)\cdot 19^{2} + \left(16 a + 18\right)\cdot 19^{3} + \left(13 a + 11\right)\cdot 19^{4} + \left(14 a + 5\right)\cdot 19^{5} + \left(a + 7\right)\cdot 19^{6} + \left(11 a + 14\right)\cdot 19^{7} + \left(13 a + 3\right)\cdot 19^{8} + \left(12 a + 18\right)\cdot 19^{9} + \left(7 a + 17\right)\cdot 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 14 + \left(7 a + 14\right)\cdot 19 + 4 a\cdot 19^{2} + \left(2 a + 2\right)\cdot 19^{3} + \left(5 a + 9\right)\cdot 19^{4} + \left(4 a + 6\right)\cdot 19^{5} + \left(17 a + 13\right)\cdot 19^{6} + \left(7 a + 4\right)\cdot 19^{7} + \left(5 a + 6\right)\cdot 19^{8} + \left(6 a + 17\right)\cdot 19^{9} + \left(11 a + 12\right)\cdot 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 8 + \left(3 a + 11\right)\cdot 19 + \left(6 a + 1\right)\cdot 19^{2} + \left(18 a + 3\right)\cdot 19^{3} + \left(3 a + 6\right)\cdot 19^{4} + \left(9 a + 18\right)\cdot 19^{5} + \left(5 a + 5\right)\cdot 19^{6} + \left(4 a + 3\right)\cdot 19^{7} + \left(9 a + 4\right)\cdot 19^{8} + \left(8 a + 12\right)\cdot 19^{9} + \left(15 a + 5\right)\cdot 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 6 + 9\cdot 19 + 13\cdot 19^{2} + 2\cdot 19^{4} + 15\cdot 19^{5} + 10\cdot 19^{6} + 13\cdot 19^{7} + 5\cdot 19^{8} + 14\cdot 19^{9} +O\left(19^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(5,6)$
$(1,2,5,4,6,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,6)(3,5)$$-2$
$3$$2$$(2,3)(5,6)$$0$
$3$$2$$(1,2)(3,5)(4,6)$$0$
$2$$3$$(1,5,6)(2,4,3)$$-1$
$2$$6$$(1,2,5,4,6,3)$$1$
The blue line marks the conjugacy class containing complex conjugation.