Properties

Label 2.3e2_7e2_13e2.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 3^{2} \cdot 7^{2} \cdot 13^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$74529= 3^{2} \cdot 7^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + x^{6} - 68 x^{5} - 308 x^{4} + 1195 x^{3} + 4159 x^{2} - 5234 x - 16253 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 18 + 68\cdot 79 + 32\cdot 79^{2} + 40\cdot 79^{3} + 10\cdot 79^{4} + 67\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 21 + 74\cdot 79 + 68\cdot 79^{2} + 59\cdot 79^{3} + 4\cdot 79^{4} + 6\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 34 + 77\cdot 79 + 16\cdot 79^{2} + 73\cdot 79^{3} + 30\cdot 79^{4} + 26\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 38 + 40\cdot 79 + 31\cdot 79^{2} + 36\cdot 79^{3} + 69\cdot 79^{4} + 78\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 42 + 22\cdot 79 + 51\cdot 79^{2} + 10\cdot 79^{3} + 59\cdot 79^{4} + 19\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 52 + 19\cdot 79 + 60\cdot 79^{2} + 66\cdot 79^{3} + 37\cdot 79^{4} + 26\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 55 + 71\cdot 79 + 47\cdot 79^{2} + 56\cdot 79^{3} + 78\cdot 79^{4} + 37\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 58 + 20\cdot 79 + 6\cdot 79^{2} + 51\cdot 79^{3} + 24\cdot 79^{4} + 53\cdot 79^{5} +O\left(79^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,3,7)(2,8,5,4)$
$(1,4,3,8)(2,6,5,7)$
$(1,3)(2,5)(4,8)(6,7)$
$(1,8,7,2,3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,3)(2,5)(4,8)(6,7)$ $-2$ $-2$
$4$ $2$ $(1,3)(2,4)(5,8)$ $0$ $0$
$2$ $4$ $(1,7,3,6)(2,4,5,8)$ $0$ $0$
$4$ $4$ $(1,8,3,4)(2,7,5,6)$ $0$ $0$
$2$ $8$ $(1,8,7,2,3,4,6,5)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,4,7,5,3,8,6,2)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.