Properties

Label 2.3e2_7e2.8t8.1c2
Dimension 2
Group $QD_{16}$
Conductor $ 3^{2} \cdot 7^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$441= 3^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + x^{6} - 5 x^{5} + 7 x^{4} - 2 x^{3} + x^{2} - 5 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 39\cdot 79 + 56\cdot 79^{2} + 40\cdot 79^{3} + 4\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 22\cdot 79 + 60\cdot 79^{2} + 46\cdot 79^{3} + 10\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 + 13\cdot 79 + 3\cdot 79^{2} + 65\cdot 79^{3} + 28\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 14 + 25\cdot 79 + 49\cdot 79^{2} + 17\cdot 79^{3} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 39 + 53\cdot 79 + 46\cdot 79^{2} + 48\cdot 79^{3} + 12\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 49 + 71\cdot 79 + 70\cdot 79^{2} + 52\cdot 79^{3} + 63\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 51 + 11\cdot 79 + 21\cdot 79^{2} + 34\cdot 79^{3} + 44\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 56 + 8\cdot 79^{2} + 10\cdot 79^{3} + 72\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,2,4)(3,7,5,8)$
$(1,2)(3,5)(4,6)(7,8)$
$(3,8)(4,6)(5,7)$
$(1,3,4,8,2,5,6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,5)(4,6)(7,8)$$-2$
$4$$2$$(3,8)(4,6)(5,7)$$0$
$2$$4$$(1,4,2,6)(3,8,5,7)$$0$
$4$$4$$(1,8,2,7)(3,6,5,4)$$0$
$2$$8$$(1,3,4,8,2,5,6,7)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,5,4,7,2,3,6,8)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.