Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 5 + 39\cdot 79 + 56\cdot 79^{2} + 40\cdot 79^{3} + 4\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 12 + 22\cdot 79 + 60\cdot 79^{2} + 46\cdot 79^{3} + 10\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 13 + 13\cdot 79 + 3\cdot 79^{2} + 65\cdot 79^{3} + 28\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 14 + 25\cdot 79 + 49\cdot 79^{2} + 17\cdot 79^{3} +O\left(79^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 39 + 53\cdot 79 + 46\cdot 79^{2} + 48\cdot 79^{3} + 12\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 49 + 71\cdot 79 + 70\cdot 79^{2} + 52\cdot 79^{3} + 63\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 51 + 11\cdot 79 + 21\cdot 79^{2} + 34\cdot 79^{3} + 44\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 56 + 8\cdot 79^{2} + 10\cdot 79^{3} + 72\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,6,2,4)(3,7,5,8)$ |
| $(1,2)(3,5)(4,6)(7,8)$ |
| $(3,8)(4,6)(5,7)$ |
| $(1,3,4,8,2,5,6,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,2)(3,5)(4,6)(7,8)$ |
$-2$ |
$-2$ |
| $4$ |
$2$ |
$(3,8)(4,6)(5,7)$ |
$0$ |
$0$ |
| $2$ |
$4$ |
$(1,4,2,6)(3,8,5,7)$ |
$0$ |
$0$ |
| $4$ |
$4$ |
$(1,8,2,7)(3,6,5,4)$ |
$0$ |
$0$ |
| $2$ |
$8$ |
$(1,3,4,8,2,5,6,7)$ |
$-\zeta_{8}^{3} - \zeta_{8}$ |
$\zeta_{8}^{3} + \zeta_{8}$ |
| $2$ |
$8$ |
$(1,5,4,7,2,3,6,8)$ |
$\zeta_{8}^{3} + \zeta_{8}$ |
$-\zeta_{8}^{3} - \zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.