Properties

Label 2.3e2_7_61.4t3.6
Dimension 2
Group $D_4$
Conductor $ 3^{2} \cdot 7 \cdot 61 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$3843= 3^{2} \cdot 7 \cdot 61 $
Artin number field: Splitting field of $f= x^{8} + 9 x^{6} + 381 x^{4} - 2700 x^{2} + 90000 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 27\cdot 139 + 74\cdot 139^{2} + 84\cdot 139^{3} + 5\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 19 + 139 + 108\cdot 139^{2} + 11\cdot 139^{3} + 118\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 36 + 89\cdot 139 + 115\cdot 139^{2} + 82\cdot 139^{3} + 82\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 65 + 8\cdot 139 + 3\cdot 139^{2} + 58\cdot 139^{3} + 30\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 74 + 130\cdot 139 + 135\cdot 139^{2} + 80\cdot 139^{3} + 108\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 103 + 49\cdot 139 + 23\cdot 139^{2} + 56\cdot 139^{3} + 56\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 120 + 137\cdot 139 + 30\cdot 139^{2} + 127\cdot 139^{3} + 20\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 124 + 111\cdot 139 + 64\cdot 139^{2} + 54\cdot 139^{3} + 133\cdot 139^{4} +O\left(139^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3,8,6)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $0$
$2$ $4$ $(1,3,8,6)(2,5,7,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.