Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 15 + 27\cdot 139 + 74\cdot 139^{2} + 84\cdot 139^{3} + 5\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 19 + 139 + 108\cdot 139^{2} + 11\cdot 139^{3} + 118\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 36 + 89\cdot 139 + 115\cdot 139^{2} + 82\cdot 139^{3} + 82\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 65 + 8\cdot 139 + 3\cdot 139^{2} + 58\cdot 139^{3} + 30\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 74 + 130\cdot 139 + 135\cdot 139^{2} + 80\cdot 139^{3} + 108\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 103 + 49\cdot 139 + 23\cdot 139^{2} + 56\cdot 139^{3} + 56\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 120 + 137\cdot 139 + 30\cdot 139^{2} + 127\cdot 139^{3} + 20\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 124 + 111\cdot 139 + 64\cdot 139^{2} + 54\cdot 139^{3} + 133\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2)(3,4)(5,6)(7,8)$ |
| $(1,3,8,6)(2,5,7,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-2$ |
| $2$ |
$2$ |
$(1,2)(3,4)(5,6)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,3)(4,8)(6,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,8,6)(2,5,7,4)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.