Properties

Label 2.3e2_7_61.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 3^{2} \cdot 7 \cdot 61 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$3843= 3^{2} \cdot 7 \cdot 61 $
Artin number field: Splitting field of $f= x^{8} + 33 x^{6} + 1137 x^{4} - 1584 x^{2} + 2304 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.7_61.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 157 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 17 + 117\cdot 157 + 97\cdot 157^{2} + 42\cdot 157^{3} + 2\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 47 + 29\cdot 157 + 40\cdot 157^{2} + 75\cdot 157^{3} + 125\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 58 + 135\cdot 157 + 53\cdot 157^{2} + 6\cdot 157^{3} + 146\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 68 + 14\cdot 157 + 112\cdot 157^{2} + 3\cdot 157^{3} + 25\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 89 + 142\cdot 157 + 44\cdot 157^{2} + 153\cdot 157^{3} + 131\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 99 + 21\cdot 157 + 103\cdot 157^{2} + 150\cdot 157^{3} + 10\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 110 + 127\cdot 157 + 116\cdot 157^{2} + 81\cdot 157^{3} + 31\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 140 + 39\cdot 157 + 59\cdot 157^{2} + 114\cdot 157^{3} + 154\cdot 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$4$$(1,4,8,5)(2,3,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.