Properties

Label 2.3e2_7_61.4t3.4c1
Dimension 2
Group $D_{4}$
Conductor $ 3^{2} \cdot 7 \cdot 61 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$3843= 3^{2} \cdot 7 \cdot 61 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 18 x^{2} - 13 x + 79 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.7_61.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 72 + 139 + 115\cdot 139^{2} + 102\cdot 139^{3} + 119\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 110 + 42\cdot 139 + 135\cdot 139^{2} + 100\cdot 139^{3} + 6\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 116 + 129\cdot 139 + 135\cdot 139^{2} + 3\cdot 139^{3} + 89\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 120 + 103\cdot 139 + 30\cdot 139^{2} + 70\cdot 139^{3} + 62\cdot 139^{4} +O\left(139^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,2)$$0$
$2$$4$$(1,4,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.