Properties

Label 2.3e2_7_29.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 3^{2} \cdot 7 \cdot 29 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1827= 3^{2} \cdot 7 \cdot 29 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 20 x^{5} + 44 x^{4} + 140 x^{3} + 175 x^{2} + 294 x + 196 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.7_29.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 23 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 1 + 8\cdot 23 + 2\cdot 23^{3} + 10\cdot 23^{4} + 19\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 2 + 2\cdot 23 + 19\cdot 23^{2} + 20\cdot 23^{3} + 15\cdot 23^{4} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 5 + 17\cdot 23 + 9\cdot 23^{2} + 19\cdot 23^{3} + 14\cdot 23^{4} + 18\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 6 + 22\cdot 23 + 17\cdot 23^{2} + 2\cdot 23^{3} + 5\cdot 23^{4} + 8\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 9 + 14\cdot 23 + 8\cdot 23^{2} + 23^{3} + 4\cdot 23^{4} + 3\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 12 + 21\cdot 23 + 17\cdot 23^{2} + 21\cdot 23^{3} + 15\cdot 23^{4} + 22\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 16 + 18\cdot 23 + 16\cdot 23^{2} + 3\cdot 23^{3} + 5\cdot 23^{4} + 7\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 20 + 10\cdot 23 + 23^{2} + 20\cdot 23^{3} + 20\cdot 23^{4} + 11\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,5,6)(3,7,8,4)$
$(1,3)(2,4)(5,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,8)(4,7)$$-2$
$2$$2$$(1,3)(2,4)(5,8)(6,7)$$0$
$2$$2$$(1,4)(2,8)(3,6)(5,7)$$0$
$2$$4$$(1,2,5,6)(3,7,8,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.