Properties

Label 2.3e2_7_17e2.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 3^{2} \cdot 7 \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$18207= 3^{2} \cdot 7 \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 2 x^{4} - 50 x^{3} + 175 x^{2} - 227 x + 277 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 20 + \left(28 a + 15\right)\cdot 41 + \left(23 a + 39\right)\cdot 41^{2} + \left(9 a + 24\right)\cdot 41^{3} + \left(28 a + 21\right)\cdot 41^{4} + \left(16 a + 38\right)\cdot 41^{5} + \left(36 a + 11\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 36 a + 35 + \left(12 a + 12\right)\cdot 41 + 17 a\cdot 41^{2} + \left(31 a + 30\right)\cdot 41^{3} + \left(12 a + 14\right)\cdot 41^{4} + \left(24 a + 19\right)\cdot 41^{5} + \left(4 a + 22\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 2 + 10\cdot 41 + 5\cdot 41^{2} + 15\cdot 41^{3} + 14\cdot 41^{4} + 22\cdot 41^{5} + 15\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 9 + 5\cdot 41 + 7\cdot 41^{2} + 14\cdot 41^{3} + 37\cdot 41^{4} + 20\cdot 41^{5} + 33\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 20 a + \left(20 a + 19\right)\cdot 41 + \left(21 a + 13\right)\cdot 41^{2} + \left(31 a + 3\right)\cdot 41^{3} + \left(13 a + 33\right)\cdot 41^{4} + \left(34 a + 27\right)\cdot 41^{5} + \left(40 a + 16\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 21 a + 19 + \left(20 a + 19\right)\cdot 41 + \left(19 a + 16\right)\cdot 41^{2} + \left(9 a + 35\right)\cdot 41^{3} + \left(27 a + 1\right)\cdot 41^{4} + \left(6 a + 35\right)\cdot 41^{5} + 22\cdot 41^{6} +O\left(41^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,6)$
$(1,2)(5,6)$
$(1,4)(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,4)$$-2$
$3$$2$$(1,2)(5,6)$$0$
$3$$2$$(1,4)(2,6)(3,5)$$0$
$2$$3$$(1,3,2)(4,6,5)$$-1$
$2$$6$$(1,6,3,5,2,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.