Properties

Label 2.3e2_7_13e2.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 3^{2} \cdot 7 \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$10647= 3^{2} \cdot 7 \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} - 17 x^{6} - 30 x^{4} + 1108 x^{2} + 289 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 9 + 89\cdot 109 + 73\cdot 109^{2} + 18\cdot 109^{3} + 20\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 + 50\cdot 109 + 78\cdot 109^{2} + 53\cdot 109^{3} + 97\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 46 + 59\cdot 109 + 53\cdot 109^{2} + 52\cdot 109^{3} + 86\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 47 + 28\cdot 109 + 46\cdot 109^{2} + 3\cdot 109^{3} + 75\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 62 + 80\cdot 109 + 62\cdot 109^{2} + 105\cdot 109^{3} + 33\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 63 + 49\cdot 109 + 55\cdot 109^{2} + 56\cdot 109^{3} + 22\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 84 + 58\cdot 109 + 30\cdot 109^{2} + 55\cdot 109^{3} + 11\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 100 + 19\cdot 109 + 35\cdot 109^{2} + 90\cdot 109^{3} + 88\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,2,6)(3,8,4,7)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,6)(7,8)$$-2$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(1,8)(2,7)(3,5)(4,6)$$0$
$2$$4$$(1,5,2,6)(3,8,4,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.