Properties

Label 2.3e2_7_13.4t3.5
Dimension 2
Group $D_4$
Conductor $ 3^{2} \cdot 7 \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$819= 3^{2} \cdot 7 \cdot 13 $
Artin number field: Splitting field of $f= x^{8} + 31 x^{6} + 204 x^{4} + 496 x^{2} + 256 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 14 + 54\cdot 97 + 2\cdot 97^{2} + 89\cdot 97^{3} + 30\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 + 44\cdot 97 + 23\cdot 97^{2} + 87\cdot 97^{3} + 94\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 + 55\cdot 97 + 7\cdot 97^{2} + 42\cdot 97^{3} + 56\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 28 + 58\cdot 97 + 20\cdot 97^{2} + 25\cdot 97^{3} + 51\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 69 + 38\cdot 97 + 76\cdot 97^{2} + 71\cdot 97^{3} + 45\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 73 + 41\cdot 97 + 89\cdot 97^{2} + 54\cdot 97^{3} + 40\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 81 + 52\cdot 97 + 73\cdot 97^{2} + 9\cdot 97^{3} + 2\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 83 + 42\cdot 97 + 94\cdot 97^{2} + 7\cdot 97^{3} + 66\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$
$(1,4)(2,7)(3,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,4)(2,7)(3,6)(5,8)$ $0$
$2$ $4$ $(1,7,5,6)(2,4,3,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.