Properties

Label 2.3e2_79.8t12.1c1
Dimension 2
Group $\SL(2,3)$
Conductor $ 3^{2} \cdot 79 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$711= 3^{2} \cdot 79 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 16 x^{6} + 7 x^{5} + 71 x^{4} - 31 x^{3} - 100 x^{2} + 61 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\SL(2,3)$
Parity: Even
Determinant: 1.3e2_79.3t1.2c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 8\cdot 11 + 7\cdot 11^{2} + 9\cdot 11^{3} + 3\cdot 11^{4} + 8\cdot 11^{5} + 4\cdot 11^{6} + 2\cdot 11^{7} + 9\cdot 11^{8} + 10\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 6 a^{2} + 7 a + 6 + \left(5 a^{2} + 8 a + 4\right)\cdot 11 + \left(5 a^{2} + 4 a + 9\right)\cdot 11^{2} + \left(2 a^{2} + 5 a + 2\right)\cdot 11^{3} + \left(7 a + 6\right)\cdot 11^{4} + \left(a^{2} + 9\right)\cdot 11^{5} + \left(8 a^{2} + 8 a + 8\right)\cdot 11^{6} + \left(2 a^{2} + 9 a + 2\right)\cdot 11^{7} + \left(10 a^{2} + 7 a + 6\right)\cdot 11^{8} + \left(6 a^{2} + 8 a + 10\right)\cdot 11^{9} + \left(7 a^{2} + a + 7\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 10 a^{2} + 4 a + 4 + \left(3 a^{2} + 2\right)\cdot 11 + \left(2 a^{2} + 4 a + 5\right)\cdot 11^{2} + \left(a^{2} + 8 a + 8\right)\cdot 11^{3} + \left(8 a^{2} + 7 a + 5\right)\cdot 11^{4} + \left(6 a^{2} + a + 2\right)\cdot 11^{5} + 6\cdot 11^{6} + \left(6 a^{2} + a + 3\right)\cdot 11^{7} + \left(a^{2} + 5 a + 9\right)\cdot 11^{8} + \left(3 a^{2} + 3 a + 1\right)\cdot 11^{9} + \left(9 a^{2} + 2 a + 10\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 6 a^{2} + 6 + \left(a^{2} + 2 a + 6\right)\cdot 11 + \left(3 a^{2} + 2 a + 2\right)\cdot 11^{2} + \left(7 a^{2} + 8 a + 9\right)\cdot 11^{3} + \left(2 a^{2} + 6 a + 5\right)\cdot 11^{4} + \left(3 a^{2} + 8 a + 1\right)\cdot 11^{5} + \left(2 a^{2} + 2 a + 1\right)\cdot 11^{6} + \left(2 a^{2} + 2\right)\cdot 11^{7} + \left(10 a^{2} + 9 a + 6\right)\cdot 11^{8} + \left(9 a + 2\right)\cdot 11^{9} + \left(5 a^{2} + 6 a + 8\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 9 a^{2} + 10 a + 7 + \left(a^{2} + 3 a + 5\right)\cdot 11 + \left(4 a^{2} + 2 a + 6\right)\cdot 11^{2} + \left(9 a^{2} + 4 a\right)\cdot 11^{3} + \left(10 a^{2} + 3 a + 5\right)\cdot 11^{4} + \left(10 a^{2} + 8 a + 9\right)\cdot 11^{5} + \left(a^{2} + 4 a + 6\right)\cdot 11^{6} + \left(a^{2} + 2 a\right)\cdot 11^{7} + \left(2 a^{2} + 4 a + 2\right)\cdot 11^{8} + \left(7 a^{2} + a + 10\right)\cdot 11^{9} + \left(10 a^{2} + 10 a + 8\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 10 a^{2} + 7 a + 1 + \left(9 a^{2} + 10 a + 9\right)\cdot 11 + \left(5 a^{2} + 10 a + 8\right)\cdot 11^{2} + \left(2 a^{2} + 5 a + 9\right)\cdot 11^{3} + \left(4 a^{2} + 2 a + 10\right)\cdot 11^{4} + \left(7 a^{2} + 5 a\right)\cdot 11^{5} + \left(8 a^{2} + 9 a + 1\right)\cdot 11^{6} + \left(2 a^{2} + 10 a + 10\right)\cdot 11^{7} + \left(5 a^{2} + 10 a + 9\right)\cdot 11^{8} + \left(6 a^{2} + 2 a + 1\right)\cdot 11^{9} + \left(8 a^{2} + 9 a + 6\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 7 + 11 + 5\cdot 11^{2} + 5\cdot 11^{3} + 6\cdot 11^{4} + 4\cdot 11^{5} + 10\cdot 11^{6} + 2\cdot 11^{7} + 4\cdot 11^{8} + 4\cdot 11^{9} + 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 3 a^{2} + 5 a + 10 + \left(10 a^{2} + 7 a + 5\right)\cdot 11 + \left(8 a + 9\right)\cdot 11^{2} + \left(10 a^{2} + 8\right)\cdot 11^{3} + \left(6 a^{2} + 5 a + 10\right)\cdot 11^{4} + \left(3 a^{2} + 8 a + 6\right)\cdot 11^{5} + \left(7 a + 4\right)\cdot 11^{6} + \left(7 a^{2} + 8 a + 8\right)\cdot 11^{7} + \left(3 a^{2} + 6 a + 7\right)\cdot 11^{8} + \left(8 a^{2} + 6 a\right)\cdot 11^{9} + \left(2 a^{2} + 2 a + 2\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8)(2,7,5)$
$(1,7)(2,8)(3,5)(4,6)$
$(1,6,7,4)(2,3,8,5)$
$(1,2,7,8)(3,6,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,8)(3,5)(4,6)$$-2$
$4$$3$$(2,4,3)(5,8,6)$$\zeta_{3} + 1$
$4$$3$$(2,3,4)(5,6,8)$$-\zeta_{3}$
$6$$4$$(1,2,7,8)(3,6,5,4)$$0$
$4$$6$$(1,7)(2,5,4,8,3,6)$$\zeta_{3}$
$4$$6$$(1,7)(2,6,3,8,4,5)$$-\zeta_{3} - 1$
The blue line marks the conjugacy class containing complex conjugation.