Properties

Label 2.3e2_79.4t3.1
Dimension 2
Group $D_{4}$
Conductor $ 3^{2} \cdot 79 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$711= 3^{2} \cdot 79 $
Artin number field: Splitting field of $f= x^{4} - 15 x^{2} - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 13 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 4 + 2\cdot 13 + 13^{2} + 3\cdot 13^{3} + 8\cdot 13^{4} + 6\cdot 13^{5} + 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 5 + 6\cdot 13 + 5\cdot 13^{2} + 6\cdot 13^{3} + 10\cdot 13^{4} + 5\cdot 13^{5} + 2\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 8 + 6\cdot 13 + 7\cdot 13^{2} + 6\cdot 13^{3} + 2\cdot 13^{4} + 7\cdot 13^{5} + 10\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 9 + 10\cdot 13 + 11\cdot 13^{2} + 9\cdot 13^{3} + 4\cdot 13^{4} + 6\cdot 13^{5} + 11\cdot 13^{6} +O\left(13^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.