Properties

Label 2.3e2_7.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3^{2} \cdot 7 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$63= 3^{2} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 4 x^{6} - 3 x^{5} + 3 x^{4} - 3 x^{3} + 4 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 36\cdot 67 + 39\cdot 67^{2} + 53\cdot 67^{3} + 17\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 54\cdot 67 + 7\cdot 67^{2} + 5\cdot 67^{3} + 31\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 + 7\cdot 67 + 57\cdot 67^{2} + 6\cdot 67^{3} + 40\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 + 3\cdot 67 + 29\cdot 67^{2} + 21\cdot 67^{3} + 28\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 34 + 24\cdot 67 + 67^{2} + 37\cdot 67^{3} + 43\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 39 + 28\cdot 67 + 13\cdot 67^{2} + 7\cdot 67^{3} + 30\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 42 + 9\cdot 67 + 7\cdot 67^{2} + 51\cdot 67^{3} + 32\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 55 + 37\cdot 67 + 45\cdot 67^{2} + 18\cdot 67^{3} + 44\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,2,4,8)(3,6,5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,8)(3,5)(6,7)$ $-2$
$2$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $0$
$2$ $2$ $(1,7)(2,5)(3,8)(4,6)$ $0$
$2$ $4$ $(1,2,4,8)(3,6,5,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.