Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 18 + 3\cdot 67 + 52\cdot 67^{2} + 10\cdot 67^{3} + 3\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 32 + 6\cdot 67 + 26\cdot 67^{2} + 43\cdot 67^{3} + 5\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 41 + 8\cdot 67^{2} + 41\cdot 67^{3} + 59\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 44 + 56\cdot 67 + 47\cdot 67^{2} + 38\cdot 67^{3} + 65\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2)(3,4)$ |
| $(1,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,3)(2,4)$ |
$-2$ |
| $2$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,3,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.