Properties

Label 2.3e2_61e2.8t17.1c2
Dimension 2
Group $C_4\wr C_2$
Conductor $ 3^{2} \cdot 61^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$33489= 3^{2} \cdot 61^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 2 x^{6} - 6 x^{5} + 30 x^{4} - 63 x^{3} + 71 x^{2} - 36 x + 7 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd
Determinant: 1.61.4t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 21 + 27\cdot 73 + 45\cdot 73^{2} + 14\cdot 73^{3} + 2\cdot 73^{4} + 51\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 23 + 17\cdot 73 + 21\cdot 73^{2} + 65\cdot 73^{3} + 59\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 40 + 16\cdot 73 + 17\cdot 73^{2} + 20\cdot 73^{3} + 47\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 42 + 56\cdot 73 + 54\cdot 73^{2} + 61\cdot 73^{3} + 48\cdot 73^{4} + 16\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 51 + 12\cdot 73 + 50\cdot 73^{2} + 61\cdot 73^{3} + 60\cdot 73^{4} + 34\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 58 + 69\cdot 73 + 55\cdot 73^{2} + 62\cdot 73^{3} + 70\cdot 73^{4} + 24\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 61 + 49\cdot 73 + 3\cdot 73^{2} + 48\cdot 73^{3} + 61\cdot 73^{4} + 12\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 72 + 41\cdot 73 + 43\cdot 73^{2} + 30\cdot 73^{3} + 46\cdot 73^{4} + 45\cdot 73^{5} +O\left(73^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,3)(4,6,7,5)$
$(1,8)(2,3)(4,7)(5,6)$
$(4,7)(5,6)$
$(1,5,8,6)(2,7,3,4)$
$(4,6,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,3)(4,7)(5,6)$$-2$
$2$$2$$(4,7)(5,6)$$0$
$4$$2$$(1,4)(2,5)(3,6)(7,8)$$0$
$1$$4$$(1,2,8,3)(4,5,7,6)$$2 \zeta_{4}$
$1$$4$$(1,3,8,2)(4,6,7,5)$$-2 \zeta_{4}$
$2$$4$$(1,2,8,3)(4,6,7,5)$$0$
$2$$4$$(4,6,7,5)$$\zeta_{4} - 1$
$2$$4$$(4,5,7,6)$$-\zeta_{4} - 1$
$2$$4$$(1,2,8,3)(4,7)(5,6)$$-\zeta_{4} + 1$
$2$$4$$(1,3,8,2)(4,7)(5,6)$$\zeta_{4} + 1$
$4$$4$$(1,5,8,6)(2,7,3,4)$$0$
$4$$8$$(1,4,2,5,8,7,3,6)$$0$
$4$$8$$(1,5,3,4,8,6,2,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.