Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 73 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 21 + 27\cdot 73 + 45\cdot 73^{2} + 14\cdot 73^{3} + 2\cdot 73^{4} + 51\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 23 + 17\cdot 73 + 21\cdot 73^{2} + 65\cdot 73^{3} + 59\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 40 + 16\cdot 73 + 17\cdot 73^{2} + 20\cdot 73^{3} + 47\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 42 + 56\cdot 73 + 54\cdot 73^{2} + 61\cdot 73^{3} + 48\cdot 73^{4} + 16\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 51 + 12\cdot 73 + 50\cdot 73^{2} + 61\cdot 73^{3} + 60\cdot 73^{4} + 34\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 58 + 69\cdot 73 + 55\cdot 73^{2} + 62\cdot 73^{3} + 70\cdot 73^{4} + 24\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 61 + 49\cdot 73 + 3\cdot 73^{2} + 48\cdot 73^{3} + 61\cdot 73^{4} + 12\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 72 + 41\cdot 73 + 43\cdot 73^{2} + 30\cdot 73^{3} + 46\cdot 73^{4} + 45\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2,8,3)(4,6,7,5)$ |
| $(1,8)(2,3)(4,7)(5,6)$ |
| $(4,7)(5,6)$ |
| $(1,5,8,6)(2,7,3,4)$ |
| $(4,6,7,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,8)(2,3)(4,7)(5,6)$ | $-2$ |
| $2$ | $2$ | $(4,7)(5,6)$ | $0$ |
| $4$ | $2$ | $(1,4)(2,5)(3,6)(7,8)$ | $0$ |
| $1$ | $4$ | $(1,2,8,3)(4,5,7,6)$ | $-2 \zeta_{4}$ |
| $1$ | $4$ | $(1,3,8,2)(4,6,7,5)$ | $2 \zeta_{4}$ |
| $2$ | $4$ | $(1,2,8,3)(4,6,7,5)$ | $0$ |
| $2$ | $4$ | $(4,6,7,5)$ | $\zeta_{4} + 1$ |
| $2$ | $4$ | $(4,5,7,6)$ | $-\zeta_{4} + 1$ |
| $2$ | $4$ | $(1,2,8,3)(4,7)(5,6)$ | $-\zeta_{4} - 1$ |
| $2$ | $4$ | $(1,3,8,2)(4,7)(5,6)$ | $\zeta_{4} - 1$ |
| $4$ | $4$ | $(1,5,8,6)(2,7,3,4)$ | $0$ |
| $4$ | $8$ | $(1,4,2,5,8,7,3,6)$ | $0$ |
| $4$ | $8$ | $(1,5,3,4,8,6,2,7)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.