Properties

Label 2.3e2_61.8t12.2c2
Dimension 2
Group $\SL(2,3)$
Conductor $ 3^{2} \cdot 61 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$549= 3^{2} \cdot 61 $
Artin number field: Splitting field of $f= x^{8} + x^{6} - 3 x^{5} - 3 x^{4} - 6 x^{3} + 4 x^{2} + 16 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\SL(2,3)$
Parity: Even
Determinant: 1.61.3t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 15 a^{2} + 15 a + 5 + \left(7 a^{2} + 14 a + 5\right)\cdot 17 + \left(5 a^{2} + a + 14\right)\cdot 17^{2} + \left(2 a^{2} + a + 7\right)\cdot 17^{3} + \left(a^{2} + 11 a + 10\right)\cdot 17^{4} + \left(12 a^{2} + 10 a + 14\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 5 a^{2} + 12 a + 2 + \left(11 a^{2} + 7 a + 7\right)\cdot 17 + \left(3 a^{2} + 10 a + 14\right)\cdot 17^{2} + \left(5 a^{2} + 9 a + 5\right)\cdot 17^{3} + \left(6 a^{2} + 5 a + 6\right)\cdot 17^{4} + \left(2 a^{2} + 6 a + 13\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 14 a^{2} + 15 a + 8 + \left(15 a^{2} + 6 a + 4\right)\cdot 17 + \left(10 a^{2} + 16 a + 2\right)\cdot 17^{2} + \left(16 a^{2} + 13 a + 2\right)\cdot 17^{3} + \left(11 a + 14\right)\cdot 17^{4} + \left(3 a^{2} + 12 a + 13\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 5 + 9\cdot 17 + 16\cdot 17^{2} + 12\cdot 17^{3} + 3\cdot 17^{4} + 11\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 14 + 8\cdot 17 + 12\cdot 17^{3} + 11\cdot 17^{4} + 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 12 a^{2} + 2 a + 3 + \left(13 a^{2} + 12 a + 9\right)\cdot 17 + \left(a^{2} + 8 a\right)\cdot 17^{2} + \left(4 a^{2} + 14 a + 9\right)\cdot 17^{3} + \left(16 a^{2} + 7 a + 3\right)\cdot 17^{4} + \left(9 a^{2} + 13\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 7 a^{2} + 11 + \left(12 a^{2} + 7 a + 2\right)\cdot 17 + \left(9 a^{2} + 6 a\right)\cdot 17^{2} + \left(10 a^{2} + a + 2\right)\cdot 17^{3} + \left(16 a^{2} + 15 a + 15\right)\cdot 17^{4} + \left(11 a^{2} + 5 a + 8\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 15 a^{2} + 7 a + 3 + \left(6 a^{2} + 2 a + 4\right)\cdot 17 + \left(2 a^{2} + 7 a + 2\right)\cdot 17^{2} + \left(12 a^{2} + 10 a + 16\right)\cdot 17^{3} + \left(9 a^{2} + 16 a + 2\right)\cdot 17^{4} + \left(11 a^{2} + 14 a + 8\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(2,6,5)(3,4,7)$
$(1,6,8,3)(2,5,7,4)$
$(1,5,8,4)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$3$$(1,2,4)(5,8,7)$$\zeta_{3} + 1$
$4$$3$$(1,4,2)(5,7,8)$$-\zeta_{3}$
$6$$4$$(1,5,8,4)(2,3,7,6)$$0$
$4$$6$$(1,8)(2,3,5,7,6,4)$$-\zeta_{3} - 1$
$4$$6$$(1,8)(2,4,6,7,5,3)$$\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.