Properties

Label 2.3e2_61.8t12.1c2
Dimension 2
Group $\SL(2,3)$
Conductor $ 3^{2} \cdot 61 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$549= 3^{2} \cdot 61 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} - 4 x^{6} + 23 x^{5} + 4 x^{4} - 38 x^{3} - x^{2} + 16 x + 4 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\SL(2,3)$
Parity: Even
Determinant: 1.61.3t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{3} + 2 x + 27 $
Roots:
$r_{ 1 }$ $=$ $ 26 a^{2} + 8 a + 18 + \left(20 a^{2} + 28 a + 5\right)\cdot 29 + \left(5 a^{2} + a + 28\right)\cdot 29^{2} + \left(11 a^{2} + 26 a + 8\right)\cdot 29^{3} + \left(8 a^{2} + 28 a + 26\right)\cdot 29^{4} + \left(12 a^{2} + 11 a\right)\cdot 29^{5} + \left(3 a^{2} + 22 a + 23\right)\cdot 29^{6} + \left(17 a^{2} + 20 a + 7\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 25 a^{2} + 9 a + 7 + \left(9 a^{2} + 20 a + 10\right)\cdot 29 + \left(9 a^{2} + 23 a + 23\right)\cdot 29^{2} + \left(28 a^{2} + 24 a + 2\right)\cdot 29^{3} + \left(11 a^{2} + 17 a + 2\right)\cdot 29^{4} + \left(27 a^{2} + 4 a + 21\right)\cdot 29^{5} + \left(4 a^{2} + 22 a + 5\right)\cdot 29^{6} + \left(19 a^{2} + 10 a + 20\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 26 a^{2} + 15 a + 26 + \left(27 a^{2} + 10 a\right)\cdot 29 + \left(3 a^{2} + 14 a + 20\right)\cdot 29^{2} + \left(a^{2} + 6 a + 21\right)\cdot 29^{3} + \left(19 a^{2} + 16 a + 6\right)\cdot 29^{4} + \left(a^{2} + 25 a + 25\right)\cdot 29^{5} + \left(23 a^{2} + 15 a + 23\right)\cdot 29^{6} + \left(15 a^{2} + 9 a + 5\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 12 + 19\cdot 29 + 7\cdot 29^{2} + 2\cdot 29^{3} + 20\cdot 29^{4} + 14\cdot 29^{5} + 7\cdot 29^{6} + 19\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 24 a^{2} + 5 a + 4 + \left(19 a^{2} + 8 a + 19\right)\cdot 29 + \left(19 a^{2} + 11 a + 21\right)\cdot 29^{2} + \left(4 a^{2} + 18 a + 16\right)\cdot 29^{3} + \left(2 a^{2} + 27 a + 3\right)\cdot 29^{4} + \left(3 a^{2} + 15 a + 27\right)\cdot 29^{5} + \left(17 a^{2} + 15 a + 15\right)\cdot 29^{6} + \left(28 a^{2} + 22 a + 3\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 7 a^{2} + 12 a + 12 + \left(27 a^{2} + 9 a + 4\right)\cdot 29 + \left(13 a^{2} + 3 a + 10\right)\cdot 29^{2} + \left(18 a^{2} + 7 a + 28\right)\cdot 29^{3} + \left(8 a^{2} + 11 a + 16\right)\cdot 29^{4} + \left(18 a^{2} + 12 a + 18\right)\cdot 29^{5} + \left(20 a^{2} + 13 a + 26\right)\cdot 29^{6} + \left(21 a^{2} + 26 a + 13\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 10 + 11\cdot 29 + 2\cdot 29^{2} + 13\cdot 29^{3} + 19\cdot 29^{4} + 20\cdot 29^{5} + 15\cdot 29^{6} + 13\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 8 a^{2} + 9 a + 2 + \left(10 a^{2} + 10 a + 16\right)\cdot 29 + \left(5 a^{2} + 3 a + 2\right)\cdot 29^{2} + \left(23 a^{2} + 4 a + 22\right)\cdot 29^{3} + \left(7 a^{2} + 14 a + 20\right)\cdot 29^{4} + \left(24 a^{2} + 16 a + 16\right)\cdot 29^{5} + \left(17 a^{2} + 26 a + 26\right)\cdot 29^{6} + \left(13 a^{2} + 25 a + 2\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,7,8)(3,4,6)$
$(1,8,5,6)(2,4,3,7)$
$(1,5)(2,3)(4,7)(6,8)$
$(1,2,5,3)(4,8,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,3)(4,7)(6,8)$$-2$
$4$$3$$(2,7,8)(3,4,6)$$\zeta_{3} + 1$
$4$$3$$(2,8,7)(3,6,4)$$-\zeta_{3}$
$6$$4$$(1,8,5,6)(2,4,3,7)$$0$
$4$$6$$(1,5)(2,4,8,3,7,6)$$-\zeta_{3} - 1$
$4$$6$$(1,5)(2,6,7,3,8,4)$$\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.