Properties

Label 2.3e2_5e2_7e2.8t8.1c1
Dimension 2
Group $QD_{16}$
Conductor $ 3^{2} \cdot 5^{2} \cdot 7^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$11025= 3^{2} \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + x^{6} - 26 x^{5} - 14 x^{4} + 145 x^{3} + 169 x^{2} - 320 x - 335 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 45\cdot 67 + 24\cdot 67^{2} + 6\cdot 67^{3} + 28\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 + 46\cdot 67 + 20\cdot 67^{2} + 41\cdot 67^{3} + 40\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 39 + 23\cdot 67 + 65\cdot 67^{2} + 53\cdot 67^{3} + 56\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 43 + 52\cdot 67 + 63\cdot 67^{2} + 48\cdot 67^{3} + 65\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 45 + 25\cdot 67 + 23\cdot 67^{2} + 58\cdot 67^{3} + 47\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 55 + 58\cdot 67 + 47\cdot 67^{2} + 15\cdot 67^{3} + 64\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 59 + 16\cdot 67 + 65\cdot 67^{2} + 27\cdot 67^{3} + 17\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 65 + 65\cdot 67 + 23\cdot 67^{2} + 15\cdot 67^{3} + 14\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,7,4,2,6,5,3)$
$(1,2)(3,4)(5,7)(6,8)$
$(1,4,2,3)(5,6,7,8)$
$(1,7,2,5)(3,8,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,7)(6,8)$$-2$
$4$$2$$(1,7)(2,5)(6,8)$$0$
$2$$4$$(1,7,2,5)(3,8,4,6)$$0$
$4$$4$$(1,4,2,3)(5,6,7,8)$$0$
$2$$8$$(1,3,5,6,2,4,7,8)$$-\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,4,5,8,2,3,7,6)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.