Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 14 a + 10 + \left(14 a + 7\right)\cdot 17 + \left(4 a + 14\right)\cdot 17^{2} + 13 a\cdot 17^{3} + \left(16 a + 15\right)\cdot 17^{4} + \left(8 a + 10\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 5 a + \left(14 a + 1\right)\cdot 17 + \left(5 a + 4\right)\cdot 17^{2} + \left(5 a + 16\right)\cdot 17^{3} + \left(10 a + 11\right)\cdot 17^{4} + \left(14 a + 4\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 12 a + 5 + \left(2 a + 10\right)\cdot 17 + \left(11 a + 12\right)\cdot 17^{2} + \left(11 a + 15\right)\cdot 17^{3} + \left(6 a + 16\right)\cdot 17^{4} + \left(2 a + 8\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 11 + 7\cdot 17 + 2\cdot 17^{2} + 5\cdot 17^{3} + 12\cdot 17^{4} + 9\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 3 a + 7 + \left(2 a + 8\right)\cdot 17 + \left(12 a + 4\right)\cdot 17^{2} + \left(3 a + 9\right)\cdot 17^{3} + 17^{4} + \left(8 a + 3\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 4 + 16\cdot 17 + 12\cdot 17^{2} + 3\cdot 17^{3} + 10\cdot 17^{4} + 13\cdot 17^{5} +O\left(17^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,6)(4,5)$ |
| $(1,2,4,3,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,3)(2,5)(4,6)$ | $-2$ |
| $3$ | $2$ | $(2,6)(4,5)$ | $0$ |
| $3$ | $2$ | $(1,2)(3,5)(4,6)$ | $0$ |
| $2$ | $3$ | $(1,4,5)(2,3,6)$ | $-1$ |
| $2$ | $6$ | $(1,2,4,3,5,6)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.