Properties

Label 2.3e2_5e2_61.8t7.1
Dimension 2
Group $C_8:C_2$
Conductor $ 3^{2} \cdot 5^{2} \cdot 61 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$13725= 3^{2} \cdot 5^{2} \cdot 61 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 13 x^{6} - 21 x^{5} - 135 x^{4} + 84 x^{3} + 13 x^{2} + 672 x + 271 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 24 + 5\cdot 89 + 35\cdot 89^{2} + 88\cdot 89^{3} + 6\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 + 85\cdot 89 + 66\cdot 89^{2} + 70\cdot 89^{3} + 24\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 51 + 25\cdot 89^{2} + 77\cdot 89^{3} + 50\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 54 + 42\cdot 89 + 81\cdot 89^{2} + 82\cdot 89^{3} + 87\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 58 + 30\cdot 89 + 56\cdot 89^{2} + 8\cdot 89^{3} + 55\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 64 + 56\cdot 89 + 38\cdot 89^{2} + 87\cdot 89^{3} + 6\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 78 + 18\cdot 89 + 49\cdot 89^{2} + 30\cdot 89^{3} + 13\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 85 + 26\cdot 89 + 3\cdot 89^{2} + 88\cdot 89^{3} + 20\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(4,5)$
$(1,8,5,7,2,3,4,6)$
$(1,5,2,4)(3,6,8,7)$
$(3,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,2)(3,8)(4,5)(6,7)$ $-2$ $-2$
$2$ $2$ $(1,2)(4,5)$ $0$ $0$
$1$ $4$ $(1,5,2,4)(3,6,8,7)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,4,2,5)(3,7,8,6)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,5,2,4)(3,7,8,6)$ $0$ $0$
$2$ $8$ $(1,8,5,7,2,3,4,6)$ $0$ $0$
$2$ $8$ $(1,7,4,8,2,6,5,3)$ $0$ $0$
$2$ $8$ $(1,3,4,7,2,8,5,6)$ $0$ $0$
$2$ $8$ $(1,7,5,3,2,6,4,8)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.