Properties

Label 2.3e2_5e2_59.8t7.2c1
Dimension 2
Group $C_8:C_2$
Conductor $ 3^{2} \cdot 5^{2} \cdot 59 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$13275= 3^{2} \cdot 5^{2} \cdot 59 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 28 x^{6} - 51 x^{5} + 255 x^{4} - 201 x^{3} + 853 x^{2} + 222 x + 991 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Even
Determinant: 1.5_59.4t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 48\cdot 89 + 85\cdot 89^{2} + 4\cdot 89^{3} + 70\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 + 31\cdot 89 + 28\cdot 89^{2} + 11\cdot 89^{3} + 52\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 33 + 70\cdot 89 + 79\cdot 89^{2} + 59\cdot 89^{3} + 23\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 42 + 59\cdot 89 + 73\cdot 89^{2} + 58\cdot 89^{3} + 68\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 47 + 27\cdot 89 + 2\cdot 89^{2} + 24\cdot 89^{3} + 39\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 50 + 72\cdot 89 + 47\cdot 89^{2} + 60\cdot 89^{3} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 79 + 2\cdot 89 + 58\cdot 89^{2} + 31\cdot 89^{3} + 30\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 86 + 43\cdot 89 + 69\cdot 89^{2} + 15\cdot 89^{3} + 71\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,4)(3,7)$
$(1,5)(2,4)(3,7)(6,8)$
$(1,6,5,8)(2,7,4,3)$
$(1,7,6,2,5,3,8,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,4)(3,7)(6,8)$$-2$
$2$$2$$(2,4)(3,7)$$0$
$1$$4$$(1,6,5,8)(2,3,4,7)$$2 \zeta_{4}$
$1$$4$$(1,8,5,6)(2,7,4,3)$$-2 \zeta_{4}$
$2$$4$$(1,6,5,8)(2,7,4,3)$$0$
$2$$8$$(1,7,6,2,5,3,8,4)$$0$
$2$$8$$(1,2,8,7,5,4,6,3)$$0$
$2$$8$$(1,2,6,3,5,4,8,7)$$0$
$2$$8$$(1,3,8,2,5,7,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.