Properties

Label 2.3e2_5e2_59.8t7.1
Dimension 2
Group $C_8:C_2$
Conductor $ 3^{2} \cdot 5^{2} \cdot 59 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$13275= 3^{2} \cdot 5^{2} \cdot 59 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 28 x^{6} + 47 x^{5} + 190 x^{4} - 347 x^{3} - 358 x^{2} + 496 x + 331 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 28 + 119\cdot 149 + 126\cdot 149^{2} + 120\cdot 149^{3} + 28\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 46 + 37\cdot 149 + 132\cdot 149^{3} + 90\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 47 + 73\cdot 149 + 130\cdot 149^{2} + 90\cdot 149^{3} +O\left(149^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 82 + 47\cdot 149 + 85\cdot 149^{2} + 113\cdot 149^{3} + 61\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 86 + 32\cdot 149 + 38\cdot 149^{2} + 33\cdot 149^{3} + 148\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 89 + 79\cdot 149 + 85\cdot 149^{2} + 20\cdot 149^{3} + 98\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 94 + 84\cdot 149 + 73\cdot 149^{2} + 70\cdot 149^{3} + 95\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 125 + 121\cdot 149 + 55\cdot 149^{2} + 14\cdot 149^{3} + 72\cdot 149^{4} +O\left(149^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,4)(5,8)$
$(1,3,6,7)(2,8,4,5)$
$(1,6)(3,7)$
$(1,5,3,2,6,8,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,6)(2,4)(3,7)(5,8)$ $-2$ $-2$
$2$ $2$ $(1,6)(3,7)$ $0$ $0$
$1$ $4$ $(1,3,6,7)(2,8,4,5)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,7,6,3)(2,5,4,8)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,3,6,7)(2,5,4,8)$ $0$ $0$
$2$ $8$ $(1,5,3,2,6,8,7,4)$ $0$ $0$
$2$ $8$ $(1,2,7,5,6,4,3,8)$ $0$ $0$
$2$ $8$ $(1,8,7,2,6,5,3,4)$ $0$ $0$
$2$ $8$ $(1,2,3,8,6,4,7,5)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.