Properties

Label 2.3e2_5e2_41e2.8t5.1c1
Dimension 2
Group $Q_8$
Conductor $ 3^{2} \cdot 5^{2} \cdot 41^{2}$
Root number -1
Frobenius-Schur indicator -1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8$
Conductor:$378225= 3^{2} \cdot 5^{2} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 142 x^{6} - 115 x^{5} + 6641 x^{4} + 3055 x^{3} + 157938 x^{2} + 152941 x + 2031361 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Q_8$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 57\cdot 61 + 43\cdot 61^{2} + 31\cdot 61^{3} + 51\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 + 10\cdot 61 + 6\cdot 61^{2} + 34\cdot 61^{3} + 48\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 + 30\cdot 61 + 11\cdot 61^{2} + 21\cdot 61^{3} + 36\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 12 + 52\cdot 61 + 40\cdot 61^{2} + 38\cdot 61^{3} + 22\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 + 47\cdot 61 + 33\cdot 61^{2} + 35\cdot 61^{3} + 12\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 37 + 40\cdot 61 + 42\cdot 61^{2} + 53\cdot 61^{3} + 29\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 51 + 13\cdot 61 + 15\cdot 61^{2} + 51\cdot 61^{3} + 20\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 53 + 53\cdot 61 + 49\cdot 61^{2} + 38\cdot 61^{3} + 21\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(2,4)(3,7)(6,8)$
$(1,6,5,8)(2,7,4,3)$
$(1,2,5,4)(3,8,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,4)(3,7)(6,8)$$-2$
$2$$4$$(1,2,5,4)(3,8,7,6)$$0$
$2$$4$$(1,6,5,8)(2,7,4,3)$$0$
$2$$4$$(1,7,5,3)(2,8,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.