Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 + 29\cdot 31^{2} + 2\cdot 31^{3} + 25\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 5 + 22\cdot 31 + 6\cdot 31^{2} + 25\cdot 31^{3} + 7\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 7 + 15\cdot 31 + 17\cdot 31^{2} + 20\cdot 31^{3} + 22\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 11 + 16\cdot 31 + 17\cdot 31^{2} + 3\cdot 31^{3} + 28\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 12 + 14\cdot 31 + 23\cdot 31^{2} + 10\cdot 31^{3} + 16\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 17 + 15\cdot 31 + 26\cdot 31^{2} + 22\cdot 31^{3} + 8\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 18 + 9\cdot 31 + 2\cdot 31^{2} + 2\cdot 31^{3} + 20\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 24 + 30\cdot 31 + 5\cdot 31^{3} + 26\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2,7,5,8,4,3,6)$ |
| $(1,7,8,3)(2,5,4,6)$ |
| $(1,8)(3,7)$ |
| $(2,4)(5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,8)(2,4)(3,7)(5,6)$ | $-2$ |
| $2$ | $2$ | $(1,8)(3,7)$ | $0$ |
| $1$ | $4$ | $(1,7,8,3)(2,5,4,6)$ | $2 \zeta_{4}$ |
| $1$ | $4$ | $(1,3,8,7)(2,6,4,5)$ | $-2 \zeta_{4}$ |
| $2$ | $4$ | $(1,7,8,3)(2,6,4,5)$ | $0$ |
| $2$ | $8$ | $(1,2,7,5,8,4,3,6)$ | $0$ |
| $2$ | $8$ | $(1,5,3,2,8,6,7,4)$ | $0$ |
| $2$ | $8$ | $(1,4,3,5,8,2,7,6)$ | $0$ |
| $2$ | $8$ | $(1,5,7,4,8,6,3,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.