Properties

Label 2.3e2_5e2_41.8t7.1
Dimension 2
Group $C_8:C_2$
Conductor $ 3^{2} \cdot 5^{2} \cdot 41 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$9225= 3^{2} \cdot 5^{2} \cdot 41 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 2 x^{6} + 9 x^{5} - 90 x^{4} + 84 x^{3} + 208 x^{2} + 327 x + 211 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 29\cdot 31^{2} + 2\cdot 31^{3} + 25\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 + 22\cdot 31 + 6\cdot 31^{2} + 25\cdot 31^{3} + 7\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 + 15\cdot 31 + 17\cdot 31^{2} + 20\cdot 31^{3} + 22\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 + 16\cdot 31 + 17\cdot 31^{2} + 3\cdot 31^{3} + 28\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 12 + 14\cdot 31 + 23\cdot 31^{2} + 10\cdot 31^{3} + 16\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 17 + 15\cdot 31 + 26\cdot 31^{2} + 22\cdot 31^{3} + 8\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 18 + 9\cdot 31 + 2\cdot 31^{2} + 2\cdot 31^{3} + 20\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 24 + 30\cdot 31 + 5\cdot 31^{3} + 26\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,7,5,8,4,3,6)$
$(1,7,8,3)(2,5,4,6)$
$(1,8)(3,7)$
$(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,4)(3,7)(5,6)$ $-2$ $-2$
$2$ $2$ $(1,8)(3,7)$ $0$ $0$
$1$ $4$ $(1,7,8,3)(2,5,4,6)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,3,8,7)(2,6,4,5)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,7,8,3)(2,6,4,5)$ $0$ $0$
$2$ $8$ $(1,2,7,5,8,4,3,6)$ $0$ $0$
$2$ $8$ $(1,5,3,2,8,6,7,4)$ $0$ $0$
$2$ $8$ $(1,4,3,5,8,2,7,6)$ $0$ $0$
$2$ $8$ $(1,5,7,4,8,6,3,2)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.