Properties

Label 2.3e2_5e2_31.8t7.2c1
Dimension 2
Group $C_8:C_2$
Conductor $ 3^{2} \cdot 5^{2} \cdot 31 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$6975= 3^{2} \cdot 5^{2} \cdot 31 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 17 x^{6} - 28 x^{5} + 130 x^{4} - 182 x^{3} + 422 x^{2} - 359 x + 331 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Even
Determinant: 1.5_31.4t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 55\cdot 89 + 59\cdot 89^{2} + 79\cdot 89^{3} + 61\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 33 + 47\cdot 89 + 30\cdot 89^{2} + 69\cdot 89^{3} + 6\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 39 + 12\cdot 89 + 33\cdot 89^{2} + 15\cdot 89^{3} + 2\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 52 + 86\cdot 89 + 10\cdot 89^{2} + 3\cdot 89^{3} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 73 + 33\cdot 89 + 22\cdot 89^{2} + 63\cdot 89^{3} + 33\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 80 + 63\cdot 89 + 49\cdot 89^{2} + 9\cdot 89^{3} + 17\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 82 + 74\cdot 89 + 42\cdot 89^{2} + 3\cdot 89^{3} + 55\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 83 + 70\cdot 89 + 17\cdot 89^{2} + 23\cdot 89^{3} + 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(4,6)$
$(1,4,2,6)(3,8,7,5)$
$(1,3,4,5,2,7,6,8)$
$(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,7)(4,6)(5,8)$$-2$
$2$$2$$(1,2)(4,6)$$0$
$1$$4$$(1,4,2,6)(3,5,7,8)$$2 \zeta_{4}$
$1$$4$$(1,6,2,4)(3,8,7,5)$$-2 \zeta_{4}$
$2$$4$$(1,4,2,6)(3,8,7,5)$$0$
$2$$8$$(1,3,4,5,2,7,6,8)$$0$
$2$$8$$(1,5,6,3,2,8,4,7)$$0$
$2$$8$$(1,7,6,5,2,3,4,8)$$0$
$2$$8$$(1,5,4,7,2,8,6,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.