Properties

Label 2.3e2_5e2_29.8t7.2c2
Dimension 2
Group $C_8:C_2$
Conductor $ 3^{2} \cdot 5^{2} \cdot 29 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$6525= 3^{2} \cdot 5^{2} \cdot 29 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 2 x^{6} + 9 x^{5} - 45 x^{4} + 39 x^{3} - 107 x^{2} - 258 x + 211 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Odd
Determinant: 1.5_29.4t1.4c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 64\cdot 89 + 68\cdot 89^{2} + 87\cdot 89^{3} + 22\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 + 9\cdot 89 + 69\cdot 89^{2} + 3\cdot 89^{3} + 31\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 + 24\cdot 89 + 52\cdot 89^{2} + 69\cdot 89^{3} + 48\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 32 + 51\cdot 89 + 35\cdot 89^{2} + 48\cdot 89^{3} + 60\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 61 + 59\cdot 89 + 52\cdot 89^{2} + 69\cdot 89^{3} + 77\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 65 + 16\cdot 89 + 7\cdot 89^{2} + 30\cdot 89^{3} + 7\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 75 + 56\cdot 89 + 64\cdot 89^{2} + 6\cdot 89^{3} + 83\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 82 + 73\cdot 89 + 5\cdot 89^{2} + 40\cdot 89^{3} + 24\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(6,8)$
$(1,7,6,3,2,5,8,4)$
$(3,4)(5,7)$
$(1,6,2,8)(3,7,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,7)(6,8)$$-2$
$2$$2$$(1,2)(6,8)$$0$
$1$$4$$(1,6,2,8)(3,5,4,7)$$-2 \zeta_{4}$
$1$$4$$(1,8,2,6)(3,7,4,5)$$2 \zeta_{4}$
$2$$4$$(1,6,2,8)(3,7,4,5)$$0$
$2$$8$$(1,7,6,3,2,5,8,4)$$0$
$2$$8$$(1,3,8,7,2,4,6,5)$$0$
$2$$8$$(1,5,8,3,2,7,6,4)$$0$
$2$$8$$(1,3,6,5,2,4,8,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.