Properties

Label 2.3e2_5e2_29.8t7.1
Dimension 2
Group $C_8:C_2$
Conductor $ 3^{2} \cdot 5^{2} \cdot 29 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$6525= 3^{2} \cdot 5^{2} \cdot 29 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 2 x^{6} + 17 x^{5} - 80 x^{4} + 193 x^{3} - 358 x^{2} + 226 x + 61 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 151 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 37 + 102\cdot 151 + 25\cdot 151^{2} + 128\cdot 151^{3} + 9\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 64 + 136\cdot 151 + 17\cdot 151^{2} + 72\cdot 151^{3} + 28\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 87 + 144\cdot 151 + 67\cdot 151^{2} + 117\cdot 151^{3} + 76\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 97 + 144\cdot 151 + 96\cdot 151^{2} + 24\cdot 151^{3} + 45\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 102 + 86\cdot 151 + 65\cdot 151^{2} + 67\cdot 151^{3} + 5\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 106 + 86\cdot 151 + 5\cdot 151^{2} + 6\cdot 151^{3} + 69\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 131 + 38\cdot 151 + 149\cdot 151^{2} + 55\cdot 151^{3} + 41\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 132 + 14\cdot 151 + 24\cdot 151^{2} + 132\cdot 151^{3} + 25\cdot 151^{4} +O\left(151^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,4,3,2,7,8,6)$
$(3,6)(5,7)$
$(1,2)(3,6)(4,8)(5,7)$
$(1,8,2,4)(3,7,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,2)(3,6)(4,8)(5,7)$ $-2$ $-2$
$2$ $2$ $(3,6)(5,7)$ $0$ $0$
$1$ $4$ $(1,4,2,8)(3,7,6,5)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,8,2,4)(3,5,6,7)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,8,2,4)(3,7,6,5)$ $0$ $0$
$2$ $8$ $(1,5,4,3,2,7,8,6)$ $0$ $0$
$2$ $8$ $(1,3,8,5,2,6,4,7)$ $0$ $0$
$2$ $8$ $(1,3,4,7,2,6,8,5)$ $0$ $0$
$2$ $8$ $(1,7,8,3,2,5,4,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.