Properties

Label 2.3e2_5e2_29.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 3^{2} \cdot 5^{2} \cdot 29 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$6525= 3^{2} \cdot 5^{2} \cdot 29 $
Artin number field: Splitting field of $f= x^{8} - 31 x^{6} + 301 x^{4} - 996 x^{2} + 576 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.29.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 9 + 69\cdot 71 + 34\cdot 71^{2} + 47\cdot 71^{3} + 31\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 + 19\cdot 71 + 5\cdot 71^{2} + 64\cdot 71^{3} + 22\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 + 28\cdot 71 + 39\cdot 71^{2} + 21\cdot 71^{3} + 46\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 21 + 46\cdot 71 + 35\cdot 71^{2} + 65\cdot 71^{3} + 23\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 50 + 24\cdot 71 + 35\cdot 71^{2} + 5\cdot 71^{3} + 47\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 58 + 42\cdot 71 + 31\cdot 71^{2} + 49\cdot 71^{3} + 24\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 60 + 51\cdot 71 + 65\cdot 71^{2} + 6\cdot 71^{3} + 48\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 62 + 71 + 36\cdot 71^{2} + 23\cdot 71^{3} + 39\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,3,7)(2,8,4,6)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)(5,7)(6,8)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,8)(2,5)(3,6)(4,7)$$0$
$2$$4$$(1,5,3,7)(2,8,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.