Properties

Label 2.3e2_5e2_29.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 3^{2} \cdot 5^{2} \cdot 29 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$6525= 3^{2} \cdot 5^{2} \cdot 29 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 19 x^{2} + 4 x + 76 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 20 + 15\cdot 71 + 64\cdot 71^{2} + 41\cdot 71^{3} + 23\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 + 54\cdot 71 + 10\cdot 71^{2} + 39\cdot 71^{3} + 23\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 43 + 30\cdot 71 + 64\cdot 71^{2} + 21\cdot 71^{3} + 3\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 48 + 41\cdot 71 + 2\cdot 71^{2} + 39\cdot 71^{3} + 20\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.