Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 6 + 50\cdot 71 + 69\cdot 71^{2} + 65\cdot 71^{3} + 69\cdot 71^{4} +O\left(71^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 16 + 6\cdot 71 + 29\cdot 71^{2} + 67\cdot 71^{3} + 70\cdot 71^{4} +O\left(71^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 23 + 63\cdot 71 + 54\cdot 71^{2} + 52\cdot 71^{3} + 28\cdot 71^{4} +O\left(71^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 27 + 22\cdot 71 + 59\cdot 71^{2} + 26\cdot 71^{3} + 43\cdot 71^{4} +O\left(71^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,3)(2,4)$ |
| $(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,2)(3,4)$ |
$-2$ |
| $2$ |
$2$ |
$(1,3)(2,4)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,2,3)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.