Properties

Label 2.3e2_5e2_19.8t8.1c1
Dimension 2
Group $QD_{16}$
Conductor $ 3^{2} \cdot 5^{2} \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$4275= 3^{2} \cdot 5^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - x^{6} - 7 x^{5} + 21 x^{4} + 80 x^{3} - 45 x^{2} - 190 x - 95 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 13 + 24\cdot 191 + 38\cdot 191^{2} + 179\cdot 191^{3} + 105\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 52 + 153\cdot 191 + 37\cdot 191^{2} + 145\cdot 191^{3} + 126\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 75 + 15\cdot 191 + 190\cdot 191^{2} + 50\cdot 191^{3} + 29\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 77 + 88\cdot 191 + 92\cdot 191^{2} + 87\cdot 191^{3} + 99\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 105 + 153\cdot 191 + 35\cdot 191^{2} + 82\cdot 191^{3} + 143\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 111 + 13\cdot 191 + 166\cdot 191^{2} + 82\cdot 191^{3} + 25\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 162 + 7\cdot 191 + 88\cdot 191^{2} + 123\cdot 191^{3} + 8\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 172 + 116\cdot 191 + 115\cdot 191^{2} + 12\cdot 191^{3} + 34\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,5,7,6,8,2,4)$
$(1,5,6,2)(3,7,8,4)$
$(1,6)(2,5)(3,8)(4,7)$
$(1,2)(4,7)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,8)(4,7)$$-2$
$4$$2$$(1,2)(4,7)(5,6)$$0$
$2$$4$$(1,5,6,2)(3,7,8,4)$$0$
$4$$4$$(1,3,6,8)(2,7,5,4)$$0$
$2$$8$$(1,3,5,7,6,8,2,4)$$-\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,8,5,4,6,3,2,7)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.