Properties

Label 2.3e2_5e2_19.8t7.2c2
Dimension 2
Group $C_8:C_2$
Conductor $ 3^{2} \cdot 5^{2} \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$4275= 3^{2} \cdot 5^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 13 x^{6} + x^{5} + 55 x^{4} + 46 x^{3} + 133 x^{2} + 73 x + 211 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Even
Determinant: 1.5_19.4t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 24\cdot 59 + 5\cdot 59^{2} + 32\cdot 59^{3} + 29\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 + 48\cdot 59 + 45\cdot 59^{2} + 14\cdot 59^{3} + 14\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 + 39\cdot 59 + 15\cdot 59^{2} + 58\cdot 59^{3} + 29\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 30 + 6\cdot 59 + 51\cdot 59^{2} + 12\cdot 59^{3} + 44\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 37 + 42\cdot 59 + 3\cdot 59^{2} + 45\cdot 59^{3} + 15\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 39 + 2\cdot 59 + 8\cdot 59^{2} + 35\cdot 59^{3} + 12\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 44 + 9\cdot 59 + 18\cdot 59^{2} + 42\cdot 59^{3} + 28\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 58 + 3\cdot 59 + 29\cdot 59^{2} + 54\cdot 59^{3} + 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,3,6,4,5,2,7)$
$(1,3,4,2)(5,7,8,6)$
$(5,8)(6,7)$
$(1,4)(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)(5,8)(6,7)$$-2$
$2$$2$$(1,4)(2,3)$$0$
$1$$4$$(1,3,4,2)(5,7,8,6)$$-2 \zeta_{4}$
$1$$4$$(1,2,4,3)(5,6,8,7)$$2 \zeta_{4}$
$2$$4$$(1,3,4,2)(5,6,8,7)$$0$
$2$$8$$(1,8,3,6,4,5,2,7)$$0$
$2$$8$$(1,6,2,8,4,7,3,5)$$0$
$2$$8$$(1,5,2,6,4,8,3,7)$$0$
$2$$8$$(1,6,3,5,4,7,2,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.