Properties

Label 2.3e2_5e2_19.8t7.1c1
Dimension 2
Group $C_8:C_2$
Conductor $ 3^{2} \cdot 5^{2} \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$4275= 3^{2} \cdot 5^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 17 x^{6} + 16 x^{5} + 100 x^{4} + x^{3} - 197 x^{2} - 152 x - 29 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Even
Determinant: 1.5_19.4t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 46\cdot 89 + 60\cdot 89^{2} + 84\cdot 89^{3} + 31\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 + 74\cdot 89 + 59\cdot 89^{2} + 28\cdot 89^{3} + 67\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 39 + 64\cdot 89 + 6\cdot 89^{2} + 8\cdot 89^{3} + 5\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 44 + 38\cdot 89 + 17\cdot 89^{2} + 21\cdot 89^{3} + 35\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 60 + 79\cdot 89 + 23\cdot 89^{2} + 36\cdot 89^{3} + 68\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 61 + 74\cdot 89 + 76\cdot 89^{2} + 2\cdot 89^{3} + 7\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 67 + 54\cdot 89 + 16\cdot 89^{2} + 83\cdot 89^{3} + 4\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 71 + 12\cdot 89 + 5\cdot 89^{2} + 2\cdot 89^{3} + 47\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,6)(3,8)(4,5)$
$(2,6)(4,5)$
$(1,3,7,8)(2,4,6,5)$
$(1,5,8,2,7,4,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,6)(3,8)(4,5)$$-2$
$2$$2$$(2,6)(4,5)$$0$
$1$$4$$(1,8,7,3)(2,4,6,5)$$2 \zeta_{4}$
$1$$4$$(1,3,7,8)(2,5,6,4)$$-2 \zeta_{4}$
$2$$4$$(1,3,7,8)(2,4,6,5)$$0$
$2$$8$$(1,5,8,2,7,4,3,6)$$0$
$2$$8$$(1,2,3,5,7,6,8,4)$$0$
$2$$8$$(1,2,8,4,7,6,3,5)$$0$
$2$$8$$(1,4,3,2,7,5,8,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.