Properties

Label 2.3e2_5e2_19.8t7.1
Dimension 2
Group $C_8:C_2$
Conductor $ 3^{2} \cdot 5^{2} \cdot 19 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$4275= 3^{2} \cdot 5^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 17 x^{6} + 16 x^{5} + 100 x^{4} + x^{3} - 197 x^{2} - 152 x - 29 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 46\cdot 89 + 60\cdot 89^{2} + 84\cdot 89^{3} + 31\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 + 74\cdot 89 + 59\cdot 89^{2} + 28\cdot 89^{3} + 67\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 39 + 64\cdot 89 + 6\cdot 89^{2} + 8\cdot 89^{3} + 5\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 44 + 38\cdot 89 + 17\cdot 89^{2} + 21\cdot 89^{3} + 35\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 60 + 79\cdot 89 + 23\cdot 89^{2} + 36\cdot 89^{3} + 68\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 61 + 74\cdot 89 + 76\cdot 89^{2} + 2\cdot 89^{3} + 7\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 67 + 54\cdot 89 + 16\cdot 89^{2} + 83\cdot 89^{3} + 4\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 71 + 12\cdot 89 + 5\cdot 89^{2} + 2\cdot 89^{3} + 47\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,6)(3,8)(4,5)$
$(2,6)(4,5)$
$(1,3,7,8)(2,4,6,5)$
$(1,5,8,2,7,4,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,7)(2,6)(3,8)(4,5)$ $-2$ $-2$
$2$ $2$ $(2,6)(4,5)$ $0$ $0$
$1$ $4$ $(1,8,7,3)(2,4,6,5)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,3,7,8)(2,5,6,4)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,3,7,8)(2,4,6,5)$ $0$ $0$
$2$ $8$ $(1,5,8,2,7,4,3,6)$ $0$ $0$
$2$ $8$ $(1,2,3,5,7,6,8,4)$ $0$ $0$
$2$ $8$ $(1,2,8,4,7,6,3,5)$ $0$ $0$
$2$ $8$ $(1,4,3,2,7,5,8,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.