Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 + 46\cdot 89 + 60\cdot 89^{2} + 84\cdot 89^{3} + 31\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 14 + 74\cdot 89 + 59\cdot 89^{2} + 28\cdot 89^{3} + 67\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 39 + 64\cdot 89 + 6\cdot 89^{2} + 8\cdot 89^{3} + 5\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 44 + 38\cdot 89 + 17\cdot 89^{2} + 21\cdot 89^{3} + 35\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 60 + 79\cdot 89 + 23\cdot 89^{2} + 36\cdot 89^{3} + 68\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 61 + 74\cdot 89 + 76\cdot 89^{2} + 2\cdot 89^{3} + 7\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 67 + 54\cdot 89 + 16\cdot 89^{2} + 83\cdot 89^{3} + 4\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 71 + 12\cdot 89 + 5\cdot 89^{2} + 2\cdot 89^{3} + 47\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7)(2,6)(3,8)(4,5)$ |
| $(2,6)(4,5)$ |
| $(1,3,7,8)(2,4,6,5)$ |
| $(1,5,8,2,7,4,3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,7)(2,6)(3,8)(4,5)$ |
$-2$ |
$-2$ |
| $2$ |
$2$ |
$(2,6)(4,5)$ |
$0$ |
$0$ |
| $1$ |
$4$ |
$(1,8,7,3)(2,4,6,5)$ |
$2 \zeta_{4}$ |
$-2 \zeta_{4}$ |
| $1$ |
$4$ |
$(1,3,7,8)(2,5,6,4)$ |
$-2 \zeta_{4}$ |
$2 \zeta_{4}$ |
| $2$ |
$4$ |
$(1,3,7,8)(2,4,6,5)$ |
$0$ |
$0$ |
| $2$ |
$8$ |
$(1,5,8,2,7,4,3,6)$ |
$0$ |
$0$ |
| $2$ |
$8$ |
$(1,2,3,5,7,6,8,4)$ |
$0$ |
$0$ |
| $2$ |
$8$ |
$(1,2,8,4,7,6,3,5)$ |
$0$ |
$0$ |
| $2$ |
$8$ |
$(1,4,3,2,7,5,8,6)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.