Properties

Label 2.3e2_5e2_11.8t8.2c1
Dimension 2
Group $QD_{16}$
Conductor $ 3^{2} \cdot 5^{2} \cdot 11 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$2475= 3^{2} \cdot 5^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 4 x^{6} - 16 x^{5} - 14 x^{4} - 5 x^{3} + 5 x^{2} + 10 x - 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 179 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 18 + 58\cdot 179 + 2\cdot 179^{2} + 27\cdot 179^{3} + 106\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 57 + 61\cdot 179 + 125\cdot 179^{2} + 172\cdot 179^{3} + 28\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 104 + 158\cdot 179 + 30\cdot 179^{2} + 89\cdot 179^{3} + 124\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 110 + 172\cdot 179 + 91\cdot 179^{2} + 12\cdot 179^{3} + 42\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 126 + 108\cdot 179 + 135\cdot 179^{2} + 22\cdot 179^{3} + 33\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 140 + 22\cdot 179 + 156\cdot 179^{2} + 165\cdot 179^{3} + 102\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 168 + 105\cdot 179 + 143\cdot 179^{2} + 67\cdot 179^{3} + 62\cdot 179^{4} +O\left(179^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 173 + 27\cdot 179 + 30\cdot 179^{2} + 158\cdot 179^{3} + 36\cdot 179^{4} +O\left(179^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,3,4,7,6,8,2)$
$(1,6,7,5)(2,3,4,8)$
$(1,8,7,3)(2,6,4,5)$
$(1,7)(2,4)(3,8)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,4)(3,8)(5,6)$$-2$
$4$$2$$(1,7)(2,5)(4,6)$$0$
$2$$4$$(1,3,7,8)(2,5,4,6)$$0$
$4$$4$$(1,5,7,6)(2,8,4,3)$$0$
$2$$8$$(1,5,3,4,7,6,8,2)$$-\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,6,3,2,7,5,8,4)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.