Properties

Label 2.3e2_5e2_11.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 3^{2} \cdot 5^{2} \cdot 11 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$2475= 3^{2} \cdot 5^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 7 x^{6} - 39 x^{4} + 105 x^{3} - 137 x^{2} + 96 x - 29 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 22 + 34\cdot 89 + 41\cdot 89^{2} + 48\cdot 89^{3} + 13\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 26 + 15\cdot 89 + 70\cdot 89^{2} + 32\cdot 89^{3} + 60\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 38 + 55\cdot 89 + 15\cdot 89^{2} + 35\cdot 89^{3} + 70\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 43 + 58\cdot 89 + 46\cdot 89^{2} + 69\cdot 89^{3} + 85\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 47 + 71\cdot 89 + 65\cdot 89^{2} + 17\cdot 89^{3} + 76\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 49 + 64\cdot 89 + 82\cdot 89^{2} + 65\cdot 89^{3} + 34\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 55 + 41\cdot 89^{2} + 75\cdot 89^{3} + 88\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 79 + 55\cdot 89 + 81\cdot 89^{2} + 10\cdot 89^{3} + 15\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,8)(3,5)(6,7)$
$(1,2)(4,8)(6,7)$
$(1,2,4,8)(3,6,5,7)$
$(1,7,4,6)(2,5,8,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,4)(2,8)(3,5)(6,7)$ $-2$ $-2$
$4$ $2$ $(1,2)(4,8)(6,7)$ $0$ $0$
$2$ $4$ $(1,2,4,8)(3,6,5,7)$ $0$ $0$
$4$ $4$ $(1,7,4,6)(2,5,8,3)$ $0$ $0$
$2$ $8$ $(1,6,2,5,4,7,8,3)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,7,2,3,4,6,8,5)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.