Properties

Label 2.3e2_5e2_11.8t7.2
Dimension 2
Group $C_8:C_2$
Conductor $ 3^{2} \cdot 5^{2} \cdot 11 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$2475= 3^{2} \cdot 5^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 13 x^{6} - 21 x^{5} + 45 x^{4} - 36 x^{3} + 73 x^{2} + 12 x + 61 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 16\cdot 29 + 15\cdot 29^{2} + 2\cdot 29^{3} + 7\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 + 26\cdot 29^{2} + 9\cdot 29^{3} + 19\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 3 + 12\cdot 29 + 12\cdot 29^{2} + 29^{3} + 17\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 + 13\cdot 29 + 21\cdot 29^{2} + 18\cdot 29^{3} + 3\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 8 + 24\cdot 29 + 25\cdot 29^{2} + 21\cdot 29^{3} + 17\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 + 11\cdot 29 + 7\cdot 29^{2} + 26\cdot 29^{3} + 16\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 14 + 25\cdot 29 + 14\cdot 29^{2} + 24\cdot 29^{3} + 27\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 16 + 13\cdot 29 + 21\cdot 29^{2} + 10\cdot 29^{3} + 6\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,4)(6,8)$
$(1,7,5,2)(3,8,4,6)$
$(1,6,7,3,5,8,2,4)$
$(1,5)(2,7)(3,4)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,5)(2,7)(3,4)(6,8)$ $-2$ $-2$
$2$ $2$ $(3,4)(6,8)$ $0$ $0$
$1$ $4$ $(1,7,5,2)(3,8,4,6)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,2,5,7)(3,6,4,8)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,7,5,2)(3,6,4,8)$ $0$ $0$
$2$ $8$ $(1,6,7,3,5,8,2,4)$ $0$ $0$
$2$ $8$ $(1,3,2,6,5,4,7,8)$ $0$ $0$
$2$ $8$ $(1,6,2,4,5,8,7,3)$ $0$ $0$
$2$ $8$ $(1,4,7,6,5,3,2,8)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.