Properties

Label 2.3e2_5e2_11.8t7.1
Dimension 2
Group $C_8:C_2$
Conductor $ 3^{2} \cdot 5^{2} \cdot 11 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$2475= 3^{2} \cdot 5^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 13 x^{6} + 17 x^{5} + 40 x^{4} - 62 x^{3} - 13 x^{2} + 31 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 17\cdot 31 + 9\cdot 31^{2} + 11\cdot 31^{3} + 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 26\cdot 31 + 10\cdot 31^{2} + 16\cdot 31^{3} + 25\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 + 7\cdot 31 + 13\cdot 31^{3} + 16\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 + 30\cdot 31 + 20\cdot 31^{2} + 24\cdot 31^{3} + 24\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 27 + 23\cdot 31 + 10\cdot 31^{3} + 25\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 28 + 14\cdot 31 + 2\cdot 31^{2} + 17\cdot 31^{3} + 4\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 29 + 23\cdot 31 + 16\cdot 31^{2} + 8\cdot 31^{3} + 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 30 + 10\cdot 31 + 23\cdot 31^{3} + 24\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,7,3,6,8,4,5)$
$(1,7,6,4)(2,5,8,3)$
$(2,8)(3,5)$
$(1,6)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,6)(2,8)(3,5)(4,7)$ $-2$ $-2$
$2$ $2$ $(1,6)(4,7)$ $0$ $0$
$1$ $4$ $(1,7,6,4)(2,3,8,5)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,4,6,7)(2,5,8,3)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,7,6,4)(2,5,8,3)$ $0$ $0$
$2$ $8$ $(1,2,7,3,6,8,4,5)$ $0$ $0$
$2$ $8$ $(1,3,4,2,6,5,7,8)$ $0$ $0$
$2$ $8$ $(1,8,4,3,6,2,7,5)$ $0$ $0$
$2$ $8$ $(1,3,7,8,6,5,4,2)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.