Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 12 + 43\cdot 59 + 11\cdot 59^{2} + 6\cdot 59^{3} + 51\cdot 59^{4} +O\left(59^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 17 + 23\cdot 59 + 16\cdot 59^{2} + 27\cdot 59^{3} + 31\cdot 59^{4} +O\left(59^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 38 + 51\cdot 59 + 35\cdot 59^{2} + 37\cdot 59^{3} + 45\cdot 59^{4} +O\left(59^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 52 + 58\cdot 59 + 53\cdot 59^{2} + 46\cdot 59^{3} + 48\cdot 59^{4} +O\left(59^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,3)(2,4)$ |
| $(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,2)(3,4)$ |
$-2$ |
| $2$ |
$2$ |
$(1,3)(2,4)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,2,3)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.